Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering
نویسندگان
چکیده
In this paper, we describe an algorithm FARDiff (Fuzzy Adaptive Resonance Diffusion) which combines Diffusion Maps and Fuzzy Adaptive Resonance Theory to do clustering and biclustering on high dimensional data. We describe some applications of this method.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملClustering Large Data with Mixed Values Using Extended Fuzzy Adaptive Resonance Theory
Clustering is one of the technique or approach in content mining and it is used for grouping similar items. Clustering software datasets with mixed values is a major challenge in clustering applications. The previous work deals with unsupervised feature learning techniques such as k-Means and C-Means which cannot be able to process the mixed type of data. There are several drawbacks in the prev...
متن کاملGene Expression Analysis Using Fuzzy ART
The recent advances of genome-scale sequencing and array technologies have made it possible to monitor simultaneously the expression pattern of thousands or tens of thousands of genes. One of the following steps is to discover or extract the information for the genetic networks by analyzing such massive data sets. Therefore, various clustering methods, such as hierarchical clustering [3] or sel...
متن کاملAnalysis of expression profile using fuzzy adaptive resonance theory
MOTIVATION It is well understood that the successful clustering of expression profiles give beneficial ideas to understand the functions of uncharacterized genes. In order to realize such a successful clustering, we investigate a clustering method based on adaptive resonance theory (ART) in this report. RESULTS We apply Fuzzy ART as a clustering method for analyzing the time series expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1411.5737 شماره
صفحات -
تاریخ انتشار 2014